Multi-View Discriminant Transfer Learning
نویسندگان
چکیده
We study to incorporate multiple views of data in a perceptive transfer learning framework and propose a Multi-view Discriminant Transfer (MDT) learning approach for domain adaptation. The main idea is to find the optimal discriminant weight vectors for each view such that the correlation between the two-view projected data is maximized, while both the domain discrepancy and the view disagreement are minimized simultaneously. Furthermore, we analyze MDT theoretically from discriminant analysis perspective to explain the condition and reason, under which the proposed method is not applicable. The analytical results allow us to investigate whether there exist within-view and/or betweenview conflicts, and thus provides a deep insight into whether the transfer learning algorithm work properly or not in the view-based problems and the combined learning problem. Experiments show that MDT significantly outperforms the state-of-the-art baselines including some typical multi-view learning approaches in singleor cross-domain.
منابع مشابه
Transfer Discriminant-Analysis of Canonical Correlations for View-Transfer Action Recognition
A novel transfer learning approach, referred to as Transfer Discriminant-Analysis of Canonical Correlations (Transfer DCC), is proposed to recognize human actions from one view (target view) via the discriminative model learned from another view (source view). To cope with the considerable change between feature distributions of source view and target view, Transfer DCC includes an effective no...
متن کاملA novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples
Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by...
متن کاملIntra-View and Inter-View Supervised Correlation Analysis for Multi-View Feature Learning
Multi-view feature learning is an attractive research topic with great practical success. Canonical correlation analysis (CCA) has become an important technique in multi-view learning, since it can fully utilize the inter-view correlation. In this paper, we mainly study the CCA based multi-view supervised feature learning technique where the labels of training samples are known. Several supervi...
متن کاملGeneralized Multi-view Embedding for Visual Recognition and Cross-modal Retrieval
In this paper, the problem of multi-view embedding from different visual cues and modalities is considered. We propose a unified solution for subspace learning methods using the Rayleigh quotient, which is extensible for multiple views, supervised learning, and nonlinear embeddings. Numerous methods including canonical correlation analysis, partial least square regression, and linear discrimina...
متن کاملWeb Page Classification Based on Uncorrelated Semi-Supervised Intra-View and Inter-View Manifold Discriminant Feature Extraction
Web page classification has attracted increasing research interest. It is intrinsically a multi-view and semi-supervised application, since web pages usually contain two or more types of data, such as text, hyperlinks and images, and unlabeled pages are generally much more than labeled ones. Web page data is commonly high-dimensional. Thus, how to extract useful features from this kind of data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013